Определение параметров пространственного нагружения литых деталей тележки 18-9855 при проведении стендовых испытаний (часть 2)

Д.В.Шевченко,

к.т.н., директор научно-исследовательской дирекции ООО «Всесоюзный научно-исследовательский центр транспортных технологий» (ООО «ВНИЦТТ»)

Т. С. Куклин,

инженер-исследователь ООО «ВНИЦТТ»

А. М. Орлова,

д.т.н, заместитель генерального директора по научно-техническому развитию ПАО «Научно-производственная корпорация «Объединенная Вагонная Компания» (ПАО «НПК ОВК»)

Р. А. Савушкин,

к.т.н., генеральный директор ПАО «НПК ОВК»

С.В. Дмитриев,

генеральный директор ООО «Тихвинский испытательный центр железнодорожной техники» (ООО «ТИЦ ЖТ»)

А. В. Белянкин,

начальник отдела испытаний инфраструктуры ООО «ТИЦ ЖТ»

В последнее время на сети ОАО «РЖД» наблюдается увеличение числа выявленных усталостных трещин в надрессорной балке и боковой раме тележек 18-100. Объективный анализ показывает, что действующая методика усталостных испытаний литых деталей тележек не подтверждает их ресурс и, как следствие, не может гарантировать безопасность движения при проектировании новых деталей. В связи с этим необходима разработка новой методики ресурсных испытаний, позволяющей обеспечить наиболее близкое соответствие условий эксплуатации и условий проведения стендового эксперимента. Основой методики может служить пространственное нагружение литых деталей, реализация которого позволит добиться поставленной цели. Статья состоит из двух частей. В первой из них («Техника железных дорог», № 33 [1]) был представлен обзор первых блоков предлагаемого алгоритма. Текущая часть посвящена поездным испытаниям тележки 18-9855 и процессу подбора параметров нагружения (амплитуды сил и число циклов приложения), которые позволяют реализовать накопленное усталостное повреждение, соответствующее усталостному повреждению элемента конструкции за расчетный ресурс в эксплуатации.

Проведение и обработка результатов поездных испытаний

Для проведения поездных испытаний был сформирован состав из груженого полувагона на исследуемой тележке и вагона-лаборатории (рис. 1) [2]. Движение опытного сцепа осуществлялось в первой трети грузовых составов при следовании по маршруту от станции Алтайская до станции Хабаровск и обратно. В ходе испытаний состав прошел по участкам Западно-Сибирской, Красноярской, Восточно-Сибирской, Забайкальской и Дальневосточной железных дорог. Общая длина пути составила 10 676 км. Во время эксперимента температура окружающего воздуха колебалась

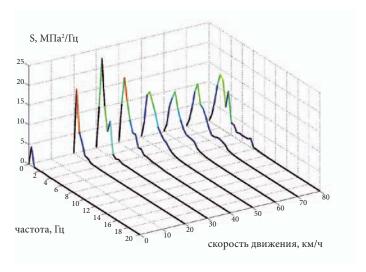
в пределах от +5 °C до -12 °C. В процессе проведения испытаний для каждого датчика производилась запись возникающих динамических напряжений.

После обработки данных была сформирована матрица блочной структуры, характеризующая количество зарегистрированных размахов напряжений, возникающих на различных участках железных дорог и соответствующих разным участкам пути: прямым, кривым малого радиуса и кривым большого радиуса. На основе данных о количестве зарегистрированных размахов напряжений для каждого тензо-

резистора вычислялись приведенные амплитуды напряжений, эквивалентные по повреждающему действию распределению амплитуд напряжений за назначенный ресурс. Для зоны внутреннего радиуса буксового проема боковой рамы значение эквивалентной амплитуды, приведенной к пробегу 4 млн км за срок службы, составило 33-38 МПа, для зоны нижнего радиуса рессорного проема - 26-31 МПа. Зоны наклонного пояса практически не нагружены, эквивалентные амплитуды напряжений не превышали 10 МПа. Для надрессорной балки самым нагруженным участком являлся нижний пояс, эквивалентная амплитуда напряжения составила 16-20 MΠa.

На рисунке 2 представлена зависимость спектральной плотности процесса изменения напряжений в датчике нижнего радиуса рессорного проема от скорости движения по прямым на протяжении поездки. Как видно, наибольшая спектральная плотность наблюдается в полосе частот от 1 до 2 Гц при скорости движения до 50 км/ч; затем спектр также распространяется на частоты от 1 до 4 Гц. Это говорит о том, что спектр от 1 до 4 Гц является основным с точки зрения возбуждения колебаний в необрессоренных частях тележки.

Также на основе полученной матрицы влияния производилось восстановление силовых факторов. Так, измеряемые в ходе испытаний в момент времени t напряжения для каждого датчика записывали в матрицу S(t), она умножалась на матрицу \hat{G}^+ , и получалась искомая матрица сил F(t) (описание матриц представлено в пункте S(t) первой части статьи S(t) На рисунке S(t) показана зависимость максимальной динамической составляющей поперечной нагрузки, действующей по одной площадке контакта клина и стенки рессорного проема боковой рамы от скорости движения в прямых.


Как видно, при увеличении скорости наблюдается плавное увеличение силы, что, очевидно, связано с повышением уровня интенсивности вертикальных колебаний. Максимальные значения по каждому силовому фактору (динамическая компонента) для надрессорной балки и боковой рамы представлены в таблице 1.

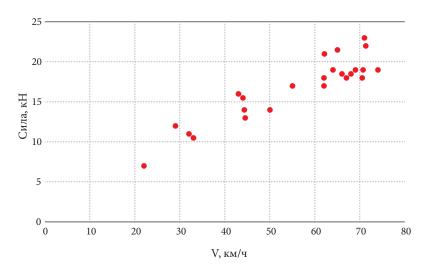


Рис. 1. Проведение испытаний тележки 18-9855

Рис. 2. Спектральная плотность процесса динамического изменения напряжений за поездку для датчика в нижнем радиусе рессорного проема при движении по прямым

Рис. 3. График зависимости поперечной нагрузки по одной площадке контакта клиньев и стенок рессорного проема боковой рамы от скорости движения при движении по прямым

№ 2 (34) maň 2016 **77**

Табл. 1. Максимальные значения динамических силовых факторов

Силовой фактор	Максимальное значение, кН			
Боковая рама				
Вертикальная нагрузка, равномерно прикладываемая по всем зонам контакта пружин рессорного подвешивания	100			
Продольная нагрузка по обеим площадкам контакта клиньев и стенок рессорного проема	50			
Продольная сила в рессорном проеме	50			
Поперечная сила по зонам контакта пружин	40			
Поперечная нагрузка по площадке контакта клиньев и стенок рессорного проема боковой рамы	70			
Надрессорная балка				
Вертикальная сила на подпятник	200			
Вертикальная сила на скользун	100			
Продольная сила на подпятник	120			

Выбор стендовых нагрузок. Определение масштабов напряжений от стендовых нагрузок

На основании анализа результатов по восстановленным силовым факторам при проведении стендовых испытаний для боковой рамы тележки выбрана нагрузка в виде блоков, состоящих из одновременного приложения трех сил, действующих по трем взаимно перпендикулярным направлениям: вертикальному, продольному и поперечному (рис. 4). Вертикальная сила прикладывается к опорным поверхностям рессорного подвешивания. Боковая и продольная силы прикладываются к специальной оснастке, передающей усилия на поверхности контакта фрикционных клиньев с фрикционной планкой (рис. 5). На один блок нагружения приходятся два цикла вертикальной и боковой нагрузок и один цикл продольной. При правильном выборе амплитуд такая комбинация из трех основных нагрузок обеспечивает максимально близкое состояние нагруженности боковой рамы при поездных и стендовых ресурсных испытаниях. Следует отметить, что аналогичная система приложения нагрузок применяется при ресурсных испытаниях, проводимых по стандартам Американской ассоциации железных дорог [3].

Анализ результатов по силовым факторам для надрессорной балки показал, что определяющими нагрузками являются вертикальная и продольная нагрузки по плоскости подпятника. Исследование эксперименталь-

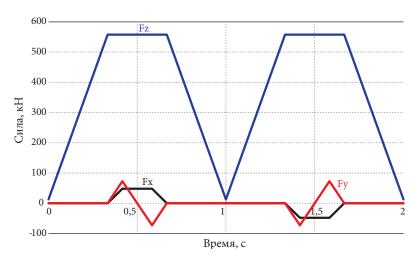


Рис. 4. Один блок стендового нагружения для боковой рамы

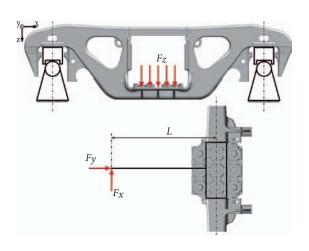
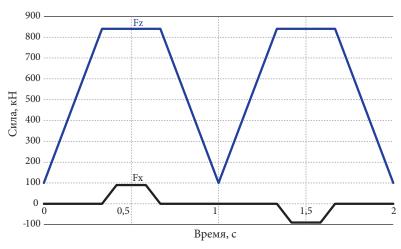



Рис. 5. Схема приложения стендовых нагрузок

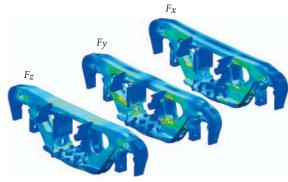
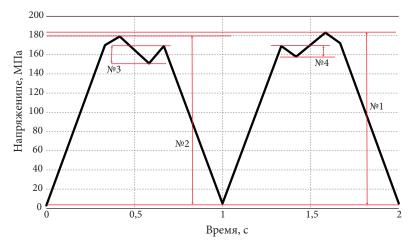


Рис. 6. Один блок стендового нагружения надрессорной балки

Рис. 7. Эквивалентные напряжения от действия единичных стендовых нагрузок

ных данных по вертикальной нагрузке на скользуны иллюстрирует, что значимые амплитуды возникали только при движении в кривых и что количество их реализаций мало. Оценка показала, что влияние данной нагрузки на ресурс надрессорной балки составляет менее 5% и ее учет в спектре стендовых сил нецелесообразен. На рисунке 6 представлен один блок стендового нагружения для надрессорной балки. Схема приложения сил соответствует режимам 1 и 3.


С целью определения откликов тензорезисторов на каждую нагрузку из спектра стендового нагружения необходимо проводить масштабирование, которое, так же как и в случае с эксплуатационными нагруз-

ками, можно осуществлять не только экспериментально, но и численно. На основе полученных данных будут определяться амплитуды стендовых нагрузок. В ходе работы проводилось численное масштабирование: на рисунке 7 на примере боковой рамы показаны поля напряжений по Мизесу от действия единичных стендовых нагрузок. Как видно, основными зонами концентрации напряжений являются зоны внутреннего радиуса рессорного проема и внутреннего радиуса буксового проема. В этих же зонах наблюдались наибольшие значения приведенных амплитуд эквивалентных напряжений, что подтверждает правильность выбора нагрузок.

Определение приведенной амплитуды динамического напряжения за один блок нагружения

На основе проведенного масштабирования для каждого датчика строилась зависимость возникающего напряжения в течение одного блока нагружения (рис. 8), по которой с помощью метода полных циклов определялась эквивалентная амплитуда за один блок нагружения. На рисунке 8 черным цветом построена характерная зависимость напряжения от времени для датчика рессорного проема.

Кратко изложим основной подход к определению эквивалентной ампитуды за один блок согласно методу полных циклов на примере зависимости напряжения от времени для датчика в рессорном проеме.

Рис. 8. Пример выделения циклов по методу полных циклов для датчика в рессорном проеме

№ 2 (34) maň 2016 **79**

Табл. 2.	Параметры	циклов	внутри	блока	нагружения	і для ;	датчика в	peccop	эном п	роеме

№ цикла	Амплитуда, МПа	Среднее значение цикла, МПа	Приведенная эквивалентная амплитуда напряжения за цикл, $\sigma_{a,j}^{u,(i)}$, МПа	Приведенная эквивалентная амплитуда напряжения за один блок, МПа		
1	90,0	93,9	1,81			
2	86,6	90,5	1,74	2.11		
3	8,2	159,3	0,18	2,11		
4	4,8	162,7	0,11			

По данному методу осуществляют выделение циклов последовательно, начиная с циклов с наименьшим размахом. Так, сначала выделяется цикл 4, затем 3 и т. д. Для каждого цикла определяют среднее значение и амплитуду, по которым вычисляется приведенная эквивалентная амплитуда для данного цикла. Итоговое значение ампли-

туды за один блок определяется как совокупность всех амплитуд циклов (табл. 2).

Для рассматриваемого датчика за один блок нагружения осуществляются два высокоамплитудных и два низкоамплитудных цикла. Аналогичным образом обрабатываются данные по остальным тензорезисторам.

Определение амплитуд стендовых нагрузок и количества блоков их приложения

Для каждой зоны измерения напряжения должно быть выполнено условие:

$$\sigma_{a, s}^{\text{m,(i)}} \ge Q \times \sigma_{a, s}^{\text{m,(i)}},$$
 (1)

где $\sigma_{a,3}^{\pi,(i)}$ – приведенная амплитуда динамического напряжения, МПа, для датчика с номером i, эквивалентная по повреждающему действию распределению амплитуд напряжений за назначенный ресурс, вычисленная на основе поездных испытаний;

Q – ресурсный коэффициент,

O = 1.4;

 $\sigma_{a,s}^{u,(i)}$ – приведенная амплитуда динамического напряжения, МПа, вычисляемая для і-го датчика во время стендовых испытаний. Она определяется через полученную приведенную амплитуду динамического напряжения $\sigma_{a,s}^{6,(i)}$ для i-го датчика за один блок нагружения:

$$\sigma_{a, 9}^{\text{M,(i)}} = N_i \times \sigma_{a, 9}^{6,(i)},$$
 (2)

Из условия равенства, реализуемого в (1), и соотношения (2) можно получить формулу (3) для определения числа блоков нагружения N_i для каждого датчика, при

котором будет обеспечен ресурс соответствующей зоны:

$$N_i = \frac{Q \times \left[\sigma_{a,\vartheta}^{\Pi,(i)}\right]^4}{\left[\sigma_{a,\vartheta}^{\delta,(i)}\right]^4},\tag{3}$$

Процесс выбора амплитуд нагрузок и количества блоков нагружений носит итеративный характер. Сначала задаются начальные амплитуды, потом проводятся вычисления количества блоков для рассматриваемых датчиков. Полученные значения сравнивают с желаемым количеством циклов приложения на стенде, а также между собой. Целью процедуры подбора является выбор таких амплитуд, при которых для всех рассматриваемых зон получаются значения количества циклов одного порядка. Далее по каждой зоне проводится осреднение и среди всех зон выбирается максимальное значение.

В таблицах 3 и 4 приведены полученные для боковой рамы и надрессорной балки значения амплитуд стендовых нагрузок.

В таблице 5 на примере двух зон боковой рамы показан расчет итогового количества блоков приложения стендовых нагрузок. После проведения вычисления для боковой рамы тележки 18-9855 полученное

Табл. 3. Стендовые нагрузки для боковой рамы

Направление действия силы	Обозначение	Диапазон изменения силы		
Вертикальное	Fz	от 13 кН до 558 кН		
Боковое	Fy	от -48 кН до 48 кН		
Продольное	Fx	от -73 кН до 73 кН		

Табл. 4. Стендовые нагрузки для надрессорной балки

Направление действия силы	Обозначение	Диапазон изменения силы		
Вертикальное	Fz	от 100 кН до 840 кН		
Продольное	Fx	от -90 кН до 90 кН		

Табл. 5. Результаты расчета контрольного числа блоков для боковой рамы тележки модели 18-9855

Зона контроля напряжения	№ датчика	Приведенная амплитуда динамического напряжения, МПа	Приведенная эквивалентная амплитуда напряжения за один блок, МПа	Количество блоков нагружений, млн	Среднее контрольное число блоков на стенде для зоны, млн
	1	31,1	1,456	0,804	
Нижний радиус	2	29,9	1,517	0,579	0,46
рессорного проема	3	26,0	1,723	0,200	0,40
	4	28,9	1,784	0,263	
Внутренний радиус буксового проема	5	37,8	1,966	0,525	
	6	32,9	2,131	0,219	0.22
	7	32,6	2,078	0,232	0,32
	8	33,9	2,008	0,312	

значение составило 0,46 млн блоков. С учетом того, что на один блок приходятся два цикла вертикальной силы, при проведении ресурсных испытаний необходимо приложить к боковой раме минимум 0,92 млн циклов вертикальной нагрузки. Отдельно отметим, что в ходе испытаний, проведенных в лаборатории CTLGroup [4] по заказу ПАО «НПК ОВК», боковые рамы были успешно испытаны на циклические нагрузки (совпадающие с приведенными в расчете) на протяжении 0,5 млн блоков (1 млн циклов) приложений.

Для надрессорной балки тележки 18-9855 была проведена аналогичная работа, в ходе которой было определено: для ресурсных испытаний необходимо приложить минимум 0,5 млн блоков стендового нагружения [5].

В связи с новизной в подходе определения параметров стендового нагружения, рассмотренного в данной работе, представляет интерес сравнение результатов с действующими документами, регламентирующими ресурсные испытания литых деталей тележек. Полученные параметры стендового нагружения хорошо коррелируют с нагрузками, заданными в действующей методике испытаний АО «ВНИИЖТ» [6]. Для проведения испытаний по результатам расчета к надрессорной балке 18-9855 необходимо приложить 1 млн циклов вертикальной силы 47±37 тс и продольной силы ±9 тс, а по методике АО «ВНИИЖТ» - 1,4 млн циклов вертикальной силы 47±36 тс. Схожесть параметров косвенно подтверждает правильность проведенных расчетов.

Заключение

В работе рассмотрен общий алгоритм выбора параметров стендового нагружения для проведения ресурсных испытаний литых деталей тележки. На примере боковой рамы и надрессорной балки тележки 18-9855 на основе проведения численного исследования и поездных испытаний были

определены амплитуды нагрузок на стенде и необходимое количество блоков приложения сил. Правильность данного выбора подтверждена в ходе проведения ресурсных испытаний. Результаты данной работы были использованы при разработке проектов ГОСТ [7], [8].

№ 2 (34) maň 2016

Список использованной литературы

- 1. Определение параметров пространственного нагружения литых деталей тележки 18-9855 при проведении стендовых испытаний / Д.В. Шевченко, Т.С. Куклин, А.М. Орлова, Р.А. Савушкин, С.В. Дмитриев, А.В. Белянкин // Техника железных дорог. 2015. № 1 (33). С. 68–74.
- 2. Результаты поездных испытаний тележки 18-9855 / А.М. Орлова, Д.В. Шевченко, Т.С. Куклин, С.В. Дмитриев // Вагоны и вагонное хозяйство. 2015 . № 1. С. 44–45.
- 3. AAR Standard M-203 «Truck Side Frames, Cast Steel-Design and Testing».
- 4. Апробация режимов ресурсных испытаний боковых рам тележки модели 18-9855 на стенде пространственного нагружения / А.М. Орлова // Вагоны и вагонное хозяйство. 2014. № 4. С. 36–37.

- 5. Выбор пространственной схемы нагружения надрессорной балки для испытаний на ресурс / А.М. Орлова, Д.В. Шевченко, Т.С. Куклин, С.В. Дмитриев // Вагоны и вагонное хозяйство. 2015. № 3. С. 36–37.
- 6. Надрессорные балки и боковые рамы литые двухосных тележек грузовых вагонов колеи 1520 мм. Методики испытаний на усталость : ОАО «Научно-исследовательский институт железнодорожного транспорта».
- 7. ГОСТ (Проект) «Детали литые тележек железнодорожных грузовых вагонов. Методы ресурсных испытаний. Часть 1. Рама боковая».
- 8. ГОСТ (Проект) «Детали литые тележек железнодорожных грузовых вагонов. Методы ресурсных испытаний. Часть 2. Балка надрессорная». (§)

TEXHUKA® XENEBHUX AOPOL

ОБЪЕКТИВНОЕ ОТРАЖЕНИЕ СОСТОЯНИЯ И ДИНАМИКИ РАЗВИТИЯ ОТЕЧЕСТВЕННОГО ЖЕЛЕЗНОДОРОЖНОГО МАШИНОСТРОЕНИЯ

В КАЖДОМ НОМЕРЕ:

Новые конструкторские решения в России и за рубежом **Анализ проблем и перспектив** развития отрасли

Статистическая информация по производству железнодорожной техники

Интервью с первыми лицами отрасли

Страницы истории железнодорожного

ПОДПИСЫВАЙТЕСЬ!

Через все подписные каталоги России: индекс **41560**

Через научную электронную библиотеку eLibrary.ru

Через редакцию напрямую

Контактная информация: Тел.: +7 (495) 690-14-26 vestnik@ipem.ru

Решением Президиума ВАК Минобрнауки России от 19 февраля 2010 года №6/6 журнал «Техника железных дорог» включен в Перечень ведущих рецензируемых научных журналов и изданий.